Scalable D2D Communications for Frequency Reuse ≫ 1 in 5G

نویسندگان

  • Daniel Verenzuela
  • Guowang Miao
چکیده

Proximity-based applications are becoming fast growing markets suggesting that device-to-device (D2D) communications is becoming an essential part of the future mobile data networks. We propose scalable admission and power control methods for D2D communications underlay cellular networks to increase the reuse of frequency resources and thus network capacity while maintaining QoS to all users. In practice, as D2D communications will generate a new layer of interference, it is essential to take D2D interference into account in inter-cell interference coordination for multi-cell communications. The aim of the proposed methods is to maximize the number of D2D links under QoS constraints, therefore maximizing network frequency reuse in a practical 5G multi-cell environment. Different schemes are designed for applications that have different levels of complexity and availability of channel state information. Numerical results show that by using D2D and the proposed multi-cell interference coordination and low power transmission method, the network spectral efficiency can be increased by as much as ten times, while low outage probability can be assured to provide QoS for all users.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalable Device-to-Device Communications For Frequency Reuse >> 1

Proximity based applications are becoming fast growing markets suggesting that Device-to-Device (D2D) communications is becoming an essential part of future mobile data networks. We present three solutions for coordinating the interferences that aim at maximizing the density of D2D links while considering different levels of complexity and available channel state information (CSI). We analyze t...

متن کامل

An Incentive-Aware Lightweight Secure Data Sharing Scheme for D2D Communication in 5G Cellular Networks

Due to the explosion of smart devices, data traffic over cellular networks has seen an exponential rise in recent years. This increase in mobile data traffic has caused an immediate need for offloading traffic from operators. Device-to-Device(D2D) communication is a promising solution to boost the capacity of cellular networks and alleviate the heavy burden on backhaul links. However, dir...

متن کامل

Multi-cell Device-to-Device Communications: A Spectrum Sharing and Densification Study

One of the most significant 5G technology enablers will be Device-to-Device (D2D) communications. D2D communications constitute a promising way to improve spectral, energy and latency performance, exploiting the physical proximity of communicating devices and increasing resource utilization. Furthermore, network infrastructure densification has been considered as one of the most substantial met...

متن کامل

Improving Qos for D2d Communication in 5g Scenario

D2D communication motor-assisted by a cellular network brings the advantage of the proximity of wireless devices to boost reusing resources between D2D and cellular UEs, and imparts any rewards of hop gain. 3GPP started a study item on proximity-based services in D2D. SAE design for a D2D network, which incorporates the core and access, the protocol stack for D2D communication and completely di...

متن کامل

Load Balancing for 5G Ultra-Dense Networks using Device-to-Device Communications

Load balancing is an effective approach to address the spatial-temporal fluctuation problem of mobile data traffic for cellular networks. The existing schemes that focus on channel borrowing from neighboring cells cannot be directly applied to future 5G wireless networks, because the neighboring cells will reuse the same spectrum band in 5G systems. In this paper, we consider an orthogonal freq...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • IEEE Trans. Wireless Communications

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2017